195 research outputs found

    Multi-services agency for the integrated management of mobility and of accessibility to transport services

    Get PDF
    AGATA (Multi-services agency based on telecommunication centres for the integrated management of mobility and of accessibility to transport services) is an INTERREG III B MEDOCC area project, which began in July 2004 and will last until June 2006. The AGATA consortium of 8 partners from 3 European countries (Italy, Spain and Portugal) and one South Mediterranean country (Morocco), works towards the development of a multi-service agency which coordinates flexible transport and mobility services in urban and rural areas. This agency will be based on modern information and communication technologies, and composed of a network of services facilitating interactions between actors and agency. The project represents an example of transfer from the world of research to public administrations and transport companies, based on IST IV FP projects. AGATA’s goals are: successful undertaking of feasibility studies and pilot projects, the results of which will be widely diffused, exchange of experiences and best practices, identification of a business model for an ICT based telecommunication centre. AGATA was born in a context of growing mobility problems which this paper considers before going on to describe various different actions (studies, pilot actions, experiences exchange, results diffusion and promotion), which are currently being carried out both at a general project level and at a local level by the different partners. The results of these actions should in theory have an impact on the local environment and on the issues of transport and mobility on a wider scale. This paper shows the expected results and evaluation techniques and the possible future of such initiatives in political and financial terms

    Urban mobility and freight distribution service: best practices and lessons learnt in the MEROPE Interreg III B project

    Get PDF
    MEROPE (Telematic instruments for innovative services for mobility and logistic in urban and metropolitan areas), an INTERREG III B MEDOCC (Western Mediterranean) area project, started in September 2002 and ended in October 2004. In particular MEROPE addressed axis 3 - Transport Systems and Information Society; Measure 3.4 - Innovative communication and information technologies for the development of the territory. MEROPE’s overall objective was to investigate and develop evaluation models and telematic instruments to manage mobility and logistics in urban and metropolitan areas, in order to promote the development and application of innovative Information and Communication Technology (ICT) in support of integrated transport systems. A total of 14 cities were involved in the project, between them carrying out 9 study projects and 7 demonstration projects oriented towards the analysis and definition of mobility, transport and logistics chain features, with particular attention to their impacts in terms of environment, sustainability and competitiveness. This paper presents the development of the Merope project both at interregional level and in terms of the work carried out in each local site. Rather that a straightforward description of the work, however, it concentrates largely on an analysis of the project’s best practices and added value. As the project is now closed both in terms of activities and financial management, its current importance lies in its sustainability and transferability. Thus this paper will analyse the innovative actions carried out in Merope, within the general economic, social and political context of mobility and logistics, in order to identify what Merope has brought to the sector and what indeed remains to be done

    DETC2005-85368 MODELLING OF MAGNETIC PULL IN LARGE SIZE GENERATOR

    Get PDF
    ABSTRACT This paper presents a method to analyze the dynamical behaviour of large size generators due to the magnetic pull. In rotating electrical machines, the electromagnetic radial forces acting upon rotor and stator surfaces are very large, but they are balanced when the rotor is concentric with the stator. Similarly, the tangential forces produce only an axially rotating moment. If the rotor becomes eccentric, then an imbalance of these forces occurs, so that a net radial electromagnetic force, known as Unbalanced Magnetic Pull (UMP), is developed. The models traditionally proposed in the literature to study the UMP can be considered as reliable in case of small size electrical machines supported by rolling bearings. On the contrary, in case of large size machines, such as turbo-generators supported by oil-film bearings, the approximation of circular orbits of the rotor is not acceptable. Nevertheless, the authors who have dealt with UMP in big size generators have disregarded that these rotor filtered orbits are elliptical and generally the orbit centres are not concentric with the stator. In order to provide a more realistic model and an original contribution, in this work the actual distribution of the air-gap length during the rotation will be determined in analytical terms, by taking into account the effects produced by the actual rotor orbit. The actual UMP is calculated by using the air-gap permeance approach and the simulation of the dynamical behaviour of a 320 MW generator is presented, showing the harmonic content of the UMP and the presence of non-linearities

    Alexithymia may modulate decision making in patients with de novo Parkinson’s disease

    Get PDF
    The aim of this study was to investigate whether and how alexithymia may influence decision making under conditions of uncertainty, assessed using the Iowa Gambling Task, in patients with newly diagnosed, untreated (de novo) Parkinson’s disease, as previously reported for healthy subjects. Twenty-four patients with de novo Parkinson’s disease underwent a neuropsychological and neuropsychiatric assessment, including the Toronto Alexithymia Scale, the Geriatric Depression Scale Short Form, and the Iowa Gambling Task (IGT). The assessment showed that 12 patients were alexithymic and 12 were non-alexithymic; seven patients were found to be mildly depressed and 17 non-depressed. Alexithymic and non-alexithymic patients did not differ in the IGT total score; however, significant differences emerged across the third block of the IGT, in which the alexithymic patients outperformed the nonalexithymic patients. Depression did not influence IGT performance. Alexithymia may modulate decision making, as assessed with the IGT; alexithymia could be associated with faster learning to avoid risky choices and negative feedback, as previously reported in some studies conducted in anxious or depressed patients

    The SURPRISE demonstrator: a super-resolved compressive instrument in the visible and medium infrared for Earth Observation

    Get PDF
    While Earth Observation (EO) data has become ever more vital to understanding the planet and addressing societal challenges, applications are still limited by revisit time and spatial resolution. Though low Earth orbit missions can achieve resolutions better than 100 m, their revisit time typically stands at several days, limiting capacity to monitor dynamic events. Geostationary (GEO) missions instead typically provide data on an hour-basis but with spatial resolution limited to 1 km, which is insufficient to understand local phenomena. In this paper, we present the SURPRISE project - recently funded in the frame of the H2020 programme – that gathers the expertise from eight partners across Europe to implement a demonstrator of a super-spectral EO payload - working in the visible (VIS) - Near Infrared (NIR) and in the Medium InfraRed (MIR) and conceived to operate from GEO platform -with enhanced performance in terms of at-ground spatial resolution, and featuring innovative on-board data processing and encryption functionalities. This goal will be achieved by using Compressive Sensing (CS) technology implemented via Spatial Light Modulators (SLM). SLM-based CS technology will be used to devise a super-resolution configuration that will be exploited to increase the at-ground spatial resolution of the payload, without increasing the number of detector’s sensing elements at the image plane. The CS approach will offer further advantages for handling large amounts of data, as is the case of superspectral payloads with wide spectral and spatial coverage. It will enable fast on-board processing of acquired data for information extraction, as well as native data encryption on top of native compression. SURPRISE develops two disruptive technologies: Compressive Sensing (CS) and Spatial Light Modulator (SLM). CS optimises data acquisition (e.g. reduced storage and transmission bandwidth requirements) and enables novel onboard processing and encryption functionalities. SLM here implements the CS paradigm and achieves a super-resolution architecture. SLM technology, at the core of the CS architecture, is addressed by: reworking and testing off-the-shelf parts in relevant environment; developing roadmap for a European SLM, micromirror array-type, with electronics suitable for space qualification. By introducing for the first time the concept of a payload with medium spatial resolution (few hundreds of meters) and near continuous revisit (hourly), SURPRISE can lead to a EO major breakthrough and complement existing operational services. CS will address the challenge of large data collection, whilst onboard processing will improve timeliness, shortening time needed to extract information from images and possibly generate alarms. Impact is relevant to industrial competitiveness, with potential for market penetration of the demonstrator and its components

    Observation of the B0 → ρ0ρ0 decay from an amplitude analysis of B0 → (π+π−)(π+π−) decays

    Get PDF
    Proton–proton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb−1 , are analysed to search for the charmless B0→ρ0ρ0 decay. More than 600 B0→(π+π−)(π+π−) signal decays are selected and used to perform an amplitude analysis, under the assumption of no CP violation in the decay, from which the B0→ρ0ρ0 decay is observed for the first time with 7.1 standard deviations significance. The fraction of B0→ρ0ρ0 decays yielding a longitudinally polarised final state is measured to be fL=0.745−0.058+0.048(stat)±0.034(syst) . The B0→ρ0ρ0 branching fraction, using the B0→ϕK⁎(892)0 decay as reference, is also reported as B(B0→ρ0ρ0)=(0.94±0.17(stat)±0.09(syst)±0.06(BF))×10−6

    Precise measurements of the properties of the B-1(5721)(0,+) and B-2*(5747)(0,+) states and observation of B-+,B-0 pi(-,+) mass structures

    Get PDF
    Invariant mass distributions of B+πB^+\pi^- and B0π+B^0\pi^+ combinations are investigated in order to study excited B mesons. The analysis is based on a data sample corresponding to 3.0fb13.0 fb^{-1} of pppp collision data, recorded by the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Precise measurements of the masses and widths of the B1(5721)0,+B_1(5721)^{0,+} and B2(5747)0,+B_2^*(5747)^{0,+} states are reported. Clear enhancements, particularly prominent at high pion transverse momentum, are seen over background in the mass range 58505850-60006000 MeV in both B+πB^+\pi^- and B0π+B^0\pi^+ combinations. The structures are consistent with the presence of four excited B mesons, labelled BJ(5840)0,+B_J(5840)^{0,+} and BJ(5960)0,+B_J(5960)^{0,+}, whose masses and widths are obtained under different hypotheses for their quantum numbers.Invariant mass distributions of B+^{+} π^{−} and B0^{0} π+^{+} combinations are investigated in order to study excited B mesons. The analysis is based on a data sample corresponding to 3.0 fb1^{−1} of pp collision data, recorded by the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Precise measurements of the masses and widths of the B1_{1}(5721)0,+^{0,+} and B2^{2}(5747)0,+^{0,+} states are reported. Clear enhancements, particularly prominent at high pion transverse momentum, are seen over background in the mass range 5850-6000 MeV in both B+^{+} π^{−} and B0^{0} π+^{+} combinations. The structures are consistent with the presence of four excited B mesons, labelled BJ_{J} (5840)0,+^{0,+} and BJ_{J} (5960)0,+^{0,+}, whose masses and widths are obtained under different hypotheses for their quantum numbers.Invariant mass distributions of B+pi- and B0pi+ combinations are investigated in order to study excited B mesons. The analysis is based on a data sample corresponding to 3.0 fb-1 of pp collision data, recorded by the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Precise measurements of the masses and widths of the B_1(5721)^(0,+) and B_2*(5747)^(0,+) states are reported. Clear enhancements, particularly prominent at high pion transverse momentum, are seen over background in the mass range 5850--6000 MeV in both B+pi- and B0pi+ combinations. The structures are consistent with the presence of four excited B mesons, labelled B_J(5840)^(0,+) and B_J(5960)^(0,+), whose masses and widths are obtained under different hypotheses for their quantum numbers

    Measurement of CPCP asymmetries and polarisation fractions in Bs0K0Kˉ0B_s^0 \rightarrow K^{*0}\bar{K}{}^{*0} decays

    Get PDF
    An angular analysis of the decay Bs0K0K0B_s^0 \rightarrow K^{*0}\overline{K}{}^{*0} is performed using pppp collisions corresponding to an integrated luminosity of 1.01.0 fb1{fb}^{-1} collected by the LHCb experiment at a centre-of-mass energy s=7\sqrt{s} = 7 TeV. A combined angular and mass analysis separates six helicity amplitudes and allows the measurement of the longitudinal polarisation fraction fL=0.201±0.057(stat.)±0.040(syst.)f_L = 0.201 \pm 0.057 {(stat.)} \pm 0.040{(syst.)} for the Bs0K(892)0K(892)0B_s^0 \rightarrow K^*(892)^0 \overline{K}{}^*(892)^0 decay. A large scalar contribution from the K0(1430)K^{*}_{0}(1430) and K0(800)K^{*}_{0}(800) resonances is found, allowing the determination of additional CPCP asymmetries. Triple product and direct CPCP asymmetries are determined to be compatible with the Standard Model expectations. The branching fraction B(Bs0K(892)0K(892)0)\mathcal{B}(B_s^0 \rightarrow K^*(892)^0 \overline{K}^*(892)^0) is measured to be (10.8±2.1(stat.)±1.4(syst.)±0.6(fd/fs))×106(10.8 \pm 2.1 {(stat.)} \pm 1.4 {(syst.)} \pm 0.6 (f_d/f_s) ) \times 10^{-6}
    corecore